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What is the terminal?



What is the terminal?

I The terminal is a text-based interface to interact with the
computer.

I Alternate names: console, shell, command line, command
prompt



Example

I Say you want to delete all files in a directory that end with
.pyc

$ rm *.pyc

I This is possible to do without the terminal, but it requires
much more effort.



Why should I learn it?

I You can do almost everything using just the terminal.

I It can do many tasks faster than using a graphic interface.

I It is sometimes the only option (e.g. accessing a client’s
server using SSH).

I It is universal.



Terminal Basics

I We will be using a shell called bash: a program that interprets
and processes the commands you input into the terminal.

I The shell is always in a working directory.

I A typical command looks like:

$ command <argument1> <argument2> ...



Basic navigation commands

pwd: prints working directory.

$ pwd

/Users/jackiebaek

ls: lists directory contents.

$ ls

Applications Movies

Desktop Music

Documents Pictures

cd <directory>: change working directory to new directory.

$ cd Documents

$ pwd

/Users/jackiebaek/Documents
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Tab and arrow keys are your friends

I Use tab to autocomplete commands and file paths.

I Use ↑ and ↓ arrow keys to navigate through your command
history.

I Use clear or cmd-k to clear screen.



What is a file?

A file is a container of data (0’s and 1’s).

A file name usually has an extension (e.g. .pdf, .doc, .csv), but
these are just conventions.

A file is contained in a directory (folder). Files within the same
directory have unique names.

Every file and directory has a unique location in the file system,
called a path.

I Absolute path:
/Users/jackiebaek/Dropbox/Documents/hello.txt

I Relative path (if my current working directory is
/Users/jackiebaek/Dropbox): Documents/hello.txt
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Working with files

mkdir directory name: create a new directory.

$ mkdir new directory

touch file: create an empty file.
rm file: delete a file (Careful! Can’t be undone!)

$ touch brand new file.txt

$ rm brand new file.txt

nano file: edit contents of a file (many other editors exist).

$ nano helloworld.txt

cat file: prints contents of a file.

$ cat helloworld.txt

Hello, World!

cp source target: copy.
mv source target: move/rename.

$ cp helloworld.txt helloworld_copy.txt

$ mv helloworld.txt goodbyeworld.txt
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File path shortcuts

. is current directory.

.. is parent directory.

I ../file.txt references a file named file.txt in the parent
directory.

∼ is home.

I expands to /Users/<username> (or wherever home is on that
machine).

I ∼/Documents → /Users/jackiebaek/Documents

I The command cd (without any arguments) takes you to ∼.
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Hidden Files

I Files that start with a dot (.) are called hidden files.

I Used for storing preferences, config, settings.

I Use ls -a to list all files.

$ ls

github_notes.md presentation scripts

$ ls -a

. .git github_notes.md scripts

.. .gitignore presentation



.bashrc / .bash profile

I There is a hidden file in ∼ directory called .bashrc or
.bash profile.

I This file is a bash script that runs at the beginning of each
session (i.e. when you open the terminal).

I This file can be used to set variables or to declare aliases.

I alias new command=command

$ alias athena="ssh baek@athena.dialup.mit.edu"
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Redirection

> redirects output to a file, overwriting if file already exists.

$ ls > out.txt

>> redirects output to a file, appending if file already exists.

$ python fetch_data.py >> output.csv

< uses contents of file as STDIN (standard input) to the
command.

$ python process_stuff.py < input.txt
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Secure Shell (SSH)

I Sometimes we need to work on a remote machine.
I We need more computing power than just our local machine.
I We need to access data from a client’s server.

I Can use SSH to securely access the terminal for the remote
machine.

$ ssh baek@athena.dialup.mit.edu

Password:

Welcome to Ubuntu 14.04.5 LTS

...

Last login: Tue Aug 30 10:11:49 2016 from howe-and-ser-...

baek@howe-and-ser-moving:~$

Use logout to exit SSH session.
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Secure Copy (scp)

Can transfer files between local and remote machines using the scp
command on your local machine.

Move my file.txt from local machine to remote home directory.

$ scp my_file.txt baek@athena.dialup.mit.edu:~

Move remote file.txt from remote to local machine.

$ scp baek@athena.dialup.mit.edu:~/remote_file.txt .



Simple Pattern Matching (Globbing)

I Match [multiple] filenames with wildcard characters.

I Similar to regular expressions, but slightly different syntax.

Example:

$ ls

a1.txt a2.pdf apple.txt bar.pdf

$ echo a*

a1.txt a2.pdf apple.txt

$ echo a[0-9]*

a1.txt a2.pdf

$ echo *.pdf

a2.pdf bar.pdf
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Simple Pattern Matching (Globbing)

Figure: Source: Wikipedia

Remove all files that end with .pyc

$ rm *.pyc

Copy all files that has ”dog” in its name to the animal/ directory.

$ cp *dog* animal/
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How bash works

I Bash is a programming language.
I Can set variables, use for loops, if statements, comments, etc.

I There are several special ”environment” variables (i.e.
$PATH, $HOME, $USER, etc.) that many programs rely on.
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How bash works con’t
What happens when you type in a command, say pwd?

I Bash runs the program called pwd.
I Where is this program?

I Usually under a directory called bin, which stands for binary.

I When you type in a command, bash looks for a program with
that name under the directories listed in the $PATH
environment variable.

$ echo $PATH

/Users/jackiebaek/.local/bin:/Users/jackiebaek/.cabal/bin:/

Applications/ghc-7.10.3.app/Contents/bin:/usr/local/bin:

/usr/bin:/bin:/usr/sbin:/sbin:/usr/texbin

I $PATH contains is a list of directories separated by :

I Bash looks into each of these directories to look for the
program pwd.
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Documentation

I To look up documentation for a particular command, use
‘man command ‘. (man = manual)

$ man mkdir

NAME

mkdir -- make directories

SYNOPSIS

mkdir [-pv] [-m mode] directory_name ...

DESCRIPTION

The mkdir utility creates the directories named as operands

...

I d for down, u for up, q to quit.

I Commands can have required and/or optional arguments.

I Optional arguments usually come first, and are indicated by a
hyphen (-). These are called flags.



Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!



Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!



Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!



Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!



Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!



Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!



Thank you!
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