
Introduction to Terminal

Qingyu Song

XMU

November 10, 2025

 Credit to Jackie Baek, Computing in Optimization and Statistics 2017, MIT

Overview

Introduction & Motivation

Navigation commands

Files
Basic file commands
File path shortcuts
Hidden Files
.bashrc / .bash profile

Redirection

SSH

Simple Pattern Matching

How bash works
Environment Variables

Documentation

Key Takeaways

What is the terminal?

What is the terminal?

I The terminal is a text-based interface to interact with the
computer.

I Alternate names: console, shell, command line, command
prompt

Example

I Say you want to delete all files in a directory that end with
.pyc

$ rm *.pyc

I This is possible to do without the terminal, but it requires
much more effort.

Why should I learn it?

I You can do almost everything using just the terminal.

I It can do many tasks faster than using a graphic interface.

I It is sometimes the only option (e.g. accessing a client’s
server using SSH).

I It is universal.

Terminal Basics

I We will be using a shell called bash: a program that interprets
and processes the commands you input into the terminal.

I The shell is always in a working directory.

I A typical command looks like:

$ command <argument1> <argument2> ...

Basic navigation commands

pwd: prints working directory.

$ pwd

/Users/jackiebaek

ls: lists directory contents.

$ ls

Applications Movies

Desktop Music

Documents Pictures

cd <directory>: change working directory to new directory.

$ cd Documents

$ pwd

/Users/jackiebaek/Documents

Basic navigation commands

pwd: prints working directory.

$ pwd

/Users/jackiebaek

ls: lists directory contents.

$ ls

Applications Movies

Desktop Music

Documents Pictures

cd <directory>: change working directory to new directory.

$ cd Documents

$ pwd

/Users/jackiebaek/Documents

Basic navigation commands

pwd: prints working directory.

$ pwd

/Users/jackiebaek

ls: lists directory contents.

$ ls

Applications Movies

Desktop Music

Documents Pictures

cd <directory>: change working directory to new directory.

$ cd Documents

$ pwd

/Users/jackiebaek/Documents

Tab and arrow keys are your friends

I Use tab to autocomplete commands and file paths.

I Use ↑ and ↓ arrow keys to navigate through your command
history.

I Use clear or cmd-k to clear screen.

What is a file?

A file is a container of data (0’s and 1’s).

A file name usually has an extension (e.g. .pdf, .doc, .csv), but
these are just conventions.

A file is contained in a directory (folder). Files within the same
directory have unique names.

Every file and directory has a unique location in the file system,
called a path.

I Absolute path:
/Users/jackiebaek/Dropbox/Documents/hello.txt

I Relative path (if my current working directory is
/Users/jackiebaek/Dropbox): Documents/hello.txt

What is a file?

A file is a container of data (0’s and 1’s).

A file name usually has an extension (e.g. .pdf, .doc, .csv), but
these are just conventions.

A file is contained in a directory (folder). Files within the same
directory have unique names.

Every file and directory has a unique location in the file system,
called a path.

I Absolute path:
/Users/jackiebaek/Dropbox/Documents/hello.txt

I Relative path (if my current working directory is
/Users/jackiebaek/Dropbox): Documents/hello.txt

What is a file?

A file is a container of data (0’s and 1’s).

A file name usually has an extension (e.g. .pdf, .doc, .csv), but
these are just conventions.

A file is contained in a directory (folder). Files within the same
directory have unique names.

Every file and directory has a unique location in the file system,
called a path.

I Absolute path:
/Users/jackiebaek/Dropbox/Documents/hello.txt

I Relative path (if my current working directory is
/Users/jackiebaek/Dropbox): Documents/hello.txt

What is a file?

A file is a container of data (0’s and 1’s).

A file name usually has an extension (e.g. .pdf, .doc, .csv), but
these are just conventions.

A file is contained in a directory (folder). Files within the same
directory have unique names.

Every file and directory has a unique location in the file system,
called a path.

I Absolute path:
/Users/jackiebaek/Dropbox/Documents/hello.txt

I Relative path (if my current working directory is
/Users/jackiebaek/Dropbox): Documents/hello.txt

Working with files

mkdir directory name: create a new directory.

$ mkdir new directory

touch file: create an empty file.
rm file: delete a file (Careful! Can’t be undone!)

$ touch brand new file.txt

$ rm brand new file.txt

nano file: edit contents of a file (many other editors exist).

$ nano helloworld.txt

cat file: prints contents of a file.

$ cat helloworld.txt

Hello, World!

cp source target: copy.
mv source target: move/rename.

$ cp helloworld.txt helloworld_copy.txt

$ mv helloworld.txt goodbyeworld.txt

Working with files
mkdir directory name: create a new directory.

$ mkdir new directory

touch file: create an empty file.
rm file: delete a file (Careful! Can’t be undone!)

$ touch brand new file.txt

$ rm brand new file.txt

nano file: edit contents of a file (many other editors exist).

$ nano helloworld.txt

cat file: prints contents of a file.

$ cat helloworld.txt

Hello, World!

cp source target: copy.
mv source target: move/rename.

$ cp helloworld.txt helloworld_copy.txt

$ mv helloworld.txt goodbyeworld.txt

Working with files
mkdir directory name: create a new directory.

$ mkdir new directory

touch file: create an empty file.
rm file: delete a file (Careful! Can’t be undone!)

$ touch brand new file.txt

$ rm brand new file.txt

nano file: edit contents of a file (many other editors exist).

$ nano helloworld.txt

cat file: prints contents of a file.

$ cat helloworld.txt

Hello, World!

cp source target: copy.
mv source target: move/rename.

$ cp helloworld.txt helloworld_copy.txt

$ mv helloworld.txt goodbyeworld.txt

Working with files
mkdir directory name: create a new directory.

$ mkdir new directory

touch file: create an empty file.
rm file: delete a file (Careful! Can’t be undone!)

$ touch brand new file.txt

$ rm brand new file.txt

nano file: edit contents of a file (many other editors exist).

$ nano helloworld.txt

cat file: prints contents of a file.

$ cat helloworld.txt

Hello, World!

cp source target: copy.
mv source target: move/rename.

$ cp helloworld.txt helloworld_copy.txt

$ mv helloworld.txt goodbyeworld.txt

Working with files
mkdir directory name: create a new directory.

$ mkdir new directory

touch file: create an empty file.
rm file: delete a file (Careful! Can’t be undone!)

$ touch brand new file.txt

$ rm brand new file.txt

nano file: edit contents of a file (many other editors exist).

$ nano helloworld.txt

cat file: prints contents of a file.

$ cat helloworld.txt

Hello, World!

cp source target: copy.
mv source target: move/rename.

$ cp helloworld.txt helloworld_copy.txt

$ mv helloworld.txt goodbyeworld.txt

Working with files
mkdir directory name: create a new directory.

$ mkdir new directory

touch file: create an empty file.
rm file: delete a file (Careful! Can’t be undone!)

$ touch brand new file.txt

$ rm brand new file.txt

nano file: edit contents of a file (many other editors exist).

$ nano helloworld.txt

cat file: prints contents of a file.

$ cat helloworld.txt

Hello, World!

cp source target: copy.
mv source target: move/rename.

$ cp helloworld.txt helloworld_copy.txt

$ mv helloworld.txt goodbyeworld.txt

File path shortcuts

. is current directory.

.. is parent directory.

I ../file.txt references a file named file.txt in the parent
directory.

∼ is home.

I expands to /Users/<username> (or wherever home is on that
machine).

I ∼/Documents → /Users/jackiebaek/Documents

I The command cd (without any arguments) takes you to ∼.

File path shortcuts

. is current directory.

.. is parent directory.

I ../file.txt references a file named file.txt in the parent
directory.

∼ is home.

I expands to /Users/<username> (or wherever home is on that
machine).

I ∼/Documents → /Users/jackiebaek/Documents

I The command cd (without any arguments) takes you to ∼.

Hidden Files

I Files that start with a dot (.) are called hidden files.

I Used for storing preferences, config, settings.

I Use ls -a to list all files.

$ ls

github_notes.md presentation scripts

$ ls -a

. .git github_notes.md scripts

.. .gitignore presentation

.bashrc / .bash profile

I There is a hidden file in ∼ directory called .bashrc or
.bash profile.

I This file is a bash script that runs at the beginning of each
session (i.e. when you open the terminal).

I This file can be used to set variables or to declare aliases.

I alias new command=command

$ alias athena="ssh baek@athena.dialup.mit.edu"

.bashrc / .bash profile

I There is a hidden file in ∼ directory called .bashrc or
.bash profile.

I This file is a bash script that runs at the beginning of each
session (i.e. when you open the terminal).

I This file can be used to set variables or to declare aliases.

I alias new command=command

$ alias athena="ssh baek@athena.dialup.mit.edu"

Redirection

> redirects output to a file, overwriting if file already exists.

$ ls > out.txt

>> redirects output to a file, appending if file already exists.

$ python fetch_data.py >> output.csv

< uses contents of file as STDIN (standard input) to the
command.

$ python process_stuff.py < input.txt

Redirection

> redirects output to a file, overwriting if file already exists.

$ ls > out.txt

>> redirects output to a file, appending if file already exists.

$ python fetch_data.py >> output.csv

< uses contents of file as STDIN (standard input) to the
command.

$ python process_stuff.py < input.txt

Secure Shell (SSH)

I Sometimes we need to work on a remote machine.
I We need more computing power than just our local machine.
I We need to access data from a client’s server.

I Can use SSH to securely access the terminal for the remote
machine.

$ ssh baek@athena.dialup.mit.edu

Password:

Welcome to Ubuntu 14.04.5 LTS

...

Last login: Tue Aug 30 10:11:49 2016 from howe-and-ser-...

baek@howe-and-ser-moving:~$

Use logout to exit SSH session.

Secure Shell (SSH)

I Sometimes we need to work on a remote machine.
I We need more computing power than just our local machine.
I We need to access data from a client’s server.

I Can use SSH to securely access the terminal for the remote
machine.

$ ssh baek@athena.dialup.mit.edu

Password:

Welcome to Ubuntu 14.04.5 LTS

...

Last login: Tue Aug 30 10:11:49 2016 from howe-and-ser-...

baek@howe-and-ser-moving:~$

Use logout to exit SSH session.

Secure Shell (SSH)

I Sometimes we need to work on a remote machine.
I We need more computing power than just our local machine.
I We need to access data from a client’s server.

I Can use SSH to securely access the terminal for the remote
machine.

$ ssh baek@athena.dialup.mit.edu

Password:

Welcome to Ubuntu 14.04.5 LTS

...

Last login: Tue Aug 30 10:11:49 2016 from howe-and-ser-...

baek@howe-and-ser-moving:~$

Use logout to exit SSH session.

Secure Shell (SSH)

I Sometimes we need to work on a remote machine.
I We need more computing power than just our local machine.
I We need to access data from a client’s server.

I Can use SSH to securely access the terminal for the remote
machine.

$ ssh baek@athena.dialup.mit.edu

Password:

Welcome to Ubuntu 14.04.5 LTS

...

Last login: Tue Aug 30 10:11:49 2016 from howe-and-ser-...

baek@howe-and-ser-moving:~$

Use logout to exit SSH session.

Secure Copy (scp)

Can transfer files between local and remote machines using the scp
command on your local machine.

Move my file.txt from local machine to remote home directory.

$ scp my_file.txt baek@athena.dialup.mit.edu:~

Move remote file.txt from remote to local machine.

$ scp baek@athena.dialup.mit.edu:~/remote_file.txt .

Simple Pattern Matching (Globbing)

I Match [multiple] filenames with wildcard characters.

I Similar to regular expressions, but slightly different syntax.

Example:

$ ls

a1.txt a2.pdf apple.txt bar.pdf

$ echo a*

a1.txt a2.pdf apple.txt

$ echo a[0-9]*

a1.txt a2.pdf

$ echo *.pdf

a2.pdf bar.pdf

Simple Pattern Matching (Globbing)

I Match [multiple] filenames with wildcard characters.

I Similar to regular expressions, but slightly different syntax.

Example:

$ ls

a1.txt a2.pdf apple.txt bar.pdf

$ echo a*

a1.txt a2.pdf apple.txt

$ echo a[0-9]*

a1.txt a2.pdf

$ echo *.pdf

a2.pdf bar.pdf

Simple Pattern Matching (Globbing)

I Match [multiple] filenames with wildcard characters.

I Similar to regular expressions, but slightly different syntax.

Example:

$ ls

a1.txt a2.pdf apple.txt bar.pdf

$ echo a*

a1.txt a2.pdf apple.txt

$ echo a[0-9]*

a1.txt a2.pdf

$ echo *.pdf

a2.pdf bar.pdf

Simple Pattern Matching (Globbing)

I Match [multiple] filenames with wildcard characters.

I Similar to regular expressions, but slightly different syntax.

Example:

$ ls

a1.txt a2.pdf apple.txt bar.pdf

$ echo a*

a1.txt a2.pdf apple.txt

$ echo a[0-9]*

a1.txt a2.pdf

$ echo *.pdf

a2.pdf bar.pdf

Simple Pattern Matching (Globbing)

I Match [multiple] filenames with wildcard characters.

I Similar to regular expressions, but slightly different syntax.

Example:

$ ls

a1.txt a2.pdf apple.txt bar.pdf

$ echo a*

a1.txt a2.pdf apple.txt

$ echo a[0-9]*

a1.txt a2.pdf

$ echo *.pdf

a2.pdf bar.pdf

Simple Pattern Matching (Globbing)

Figure: Source: Wikipedia

Remove all files that end with .pyc

$ rm *.pyc

Copy all files that has ”dog” in its name to the animal/ directory.

$ cp *dog* animal/

Simple Pattern Matching (Globbing)

Figure: Source: Wikipedia

Remove all files that end with .pyc

$ rm *.pyc

Copy all files that has ”dog” in its name to the animal/ directory.

$ cp *dog* animal/

Simple Pattern Matching (Globbing)

Figure: Source: Wikipedia

Remove all files that end with .pyc

$ rm *.pyc

Copy all files that has ”dog” in its name to the animal/ directory.

$ cp *dog* animal/

How bash works

I Bash is a programming language.
I Can set variables, use for loops, if statements, comments, etc.

I There are several special ”environment” variables (i.e.
$PATH, $HOME, $USER, etc.) that many programs rely on.

How bash works

I Bash is a programming language.
I Can set variables, use for loops, if statements, comments, etc.

I There are several special ”environment” variables (i.e.
$PATH, $HOME, $USER, etc.) that many programs rely on.

How bash works

I Bash is a programming language.
I Can set variables, use for loops, if statements, comments, etc.

I There are several special ”environment” variables (i.e.
$PATH, $HOME, $USER, etc.) that many programs rely on.

How bash works con’t
What happens when you type in a command, say pwd?

I Bash runs the program called pwd.
I Where is this program?

I Usually under a directory called bin, which stands for binary.

I When you type in a command, bash looks for a program with
that name under the directories listed in the $PATH
environment variable.

$ echo $PATH

/Users/jackiebaek/.local/bin:/Users/jackiebaek/.cabal/bin:/

Applications/ghc-7.10.3.app/Contents/bin:/usr/local/bin:

/usr/bin:/bin:/usr/sbin:/sbin:/usr/texbin

I $PATH contains is a list of directories separated by :

I Bash looks into each of these directories to look for the
program pwd.

How bash works con’t
What happens when you type in a command, say pwd?

I Bash runs the program called pwd.
I Where is this program?

I Usually under a directory called bin, which stands for binary.

I When you type in a command, bash looks for a program with
that name under the directories listed in the $PATH
environment variable.

$ echo $PATH

/Users/jackiebaek/.local/bin:/Users/jackiebaek/.cabal/bin:/

Applications/ghc-7.10.3.app/Contents/bin:/usr/local/bin:

/usr/bin:/bin:/usr/sbin:/sbin:/usr/texbin

I $PATH contains is a list of directories separated by :

I Bash looks into each of these directories to look for the
program pwd.

How bash works con’t
What happens when you type in a command, say pwd?

I Bash runs the program called pwd.
I Where is this program?

I Usually under a directory called bin, which stands for binary.

I When you type in a command, bash looks for a program with
that name under the directories listed in the $PATH
environment variable.

$ echo $PATH

/Users/jackiebaek/.local/bin:/Users/jackiebaek/.cabal/bin:/

Applications/ghc-7.10.3.app/Contents/bin:/usr/local/bin:

/usr/bin:/bin:/usr/sbin:/sbin:/usr/texbin

I $PATH contains is a list of directories separated by :

I Bash looks into each of these directories to look for the
program pwd.

How bash works con’t
What happens when you type in a command, say pwd?

I Bash runs the program called pwd.
I Where is this program?

I Usually under a directory called bin, which stands for binary.

I When you type in a command, bash looks for a program with
that name under the directories listed in the $PATH
environment variable.

$ echo $PATH

/Users/jackiebaek/.local/bin:/Users/jackiebaek/.cabal/bin:/

Applications/ghc-7.10.3.app/Contents/bin:/usr/local/bin:

/usr/bin:/bin:/usr/sbin:/sbin:/usr/texbin

I $PATH contains is a list of directories separated by :

I Bash looks into each of these directories to look for the
program pwd.

Documentation

I To look up documentation for a particular command, use
‘man command ‘. (man = manual)

$ man mkdir

NAME

mkdir -- make directories

SYNOPSIS

mkdir [-pv] [-m mode] directory_name ...

DESCRIPTION

The mkdir utility creates the directories named as operands

...

I d for down, u for up, q to quit.

I Commands can have required and/or optional arguments.

I Optional arguments usually come first, and are indicated by a
hyphen (-). These are called flags.

Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!

Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!

Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!

Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!

Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!

Key Takeaways

I Basic commands: ls, cd, pwd, cat, cp, mv, rm, mkdir

I Google is your friend.

I So is tab for autocomplete, arrow keys for history.

I Be careful with rm.

I Getting comfortable with the terminal can be daunting at
first, but it has the potential to greatly boost your efficiency!

Thank you!

	Introduction & Motivation
	Navigation commands
	Files
	Basic file commands
	File path shortcuts
	Hidden Files
	.bashrc / .bash_profile

	Redirection
	SSH
	Simple Pattern Matching
	How bash works
	Environment Variables

	Documentation
	Key Takeaways

